End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perception

نویسندگان

  • Zhengyuan Yang
  • Yixuan Zhang
  • Jerry Yu
  • Junjie Cai
  • Jiebo Luo
چکیده

Convolutional Neural Networks (CNN) have been successfully applied to autonomous driving tasks, many in an endto-end manner. Previous end-to-end steering control methods take an image or an image sequence as the input and directly predict the steering angle with CNN. Although single task learning on steering angles has reported good performances, the steering angle alone is not sufficient for vehicle control. In this work, we propose a multi-task learning framework to predict the steering angle and speed control simultaneously in an end-to-end manner. Since it is nontrivial to predict accurate speed values with only visual inputs, we first propose a network to predict discrete speed commands and steering angles with image sequences. Moreover, we propose a multi-modal multi-task network to predict speed values and steering angles by taking previous feedback speeds and visual recordings as inputs. Experiments are conducted on the public Udacity dataset and a newly collected SAIC dataset. Results show that the proposed model predicts steering angles and speed values accurately. Furthermore, we improve the failure data synthesis methods to solve the problem of error accumulation in real road tests.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Modal Multi-Task Deep Learning for Autonomous Driving

Several deep learning approaches have been applied to the autonomous driving task, many employing end-toend deep neural networks. Autonomous driving is complex, utilizing multiple behavioral modalities ranging from lane changing to turning and stopping. However, most existing approaches do not factor in the different behavioral modalities of the driving task into the training strategy. This pap...

متن کامل

Brain Inspired Cognitive Model with Attention for Self-Driving Cars

Perception-driven approach and end-to-end system are two major vision-based frameworks for self-driving cars. However, it is difficult to introduce attention and historical information of autonomous driving process, which are the essential factors for achieving human-like driving into these two methods. In this paper, we propose a novel model for self-driving cars named brain-inspired cognitive...

متن کامل

Robust Shared-Control for Rear-Wheel Drive Cars

Nowadays vehicles are one of the major means of transportation. The driving safety depends highly on the driver’s attention, experience and skills. According to the report given by the World Health Organization, more than one million fatalities are caused by traffic-related accidents per year all over the world. To keep the human beings out of the vehicle control loop and to relieve them from t...

متن کامل

Macroscopic modelling and robust control of bi-modal multi-region urban road networks

The paper concerns the integration of a bi-modal Macroscopic Fundamental Diagram (MFD) modelling for mixed traffic in a robust control framework for congested singleand multi-region urban networks. The bi-modal MFD relates the accumulation of cars and buses and the outflow (or circulating flow) in homogeneous (both in the spatial distribution of congestion and the spatial mode mixture) bi-modal...

متن کامل

Multi-level Energy Management Strategy for Fuel Cell Vehicle Based on Battery Combined Efficiency and Identification of Vehicle Operation State

The design of energy management strategy is one of the main challenges in the development of fuel cell electric vehicles. The proposed strategy should be well responsive to provide demanded power of fuel cell vehicle for motion, acceleration, and different driving conditions, resulting in reduced fuel consumption, increased lifetime of power sources and increased overall fuel efficiency. The pu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.06734  شماره 

صفحات  -

تاریخ انتشار 2018